GE 124 QUARTZ

Mechanical properties:

Compressive strength: 1.9x10⁹Pa (160,000 psi). Tensile strength: 4.8 x 10⁷ Pa (7000 psi).

Permeability (at 700° C):

Helium: 2.1 x 10^{-8} cc/sec/cm²/mm/cm Hg Hydrogen: 2.1 x 10^{-9} cc/sec/cm²/mm/cm Hg Deuterium: 1.7 x 10^{-9} cc/sec/cm²/mm/cm Hg Neon: 9.5 x 10^{-10} cc/sec/cm²/mm/cm Hg **Typical Physical Properties:**

Density: $2.2 \times 10^{\circ}$ kg/m³ Hardness: 5.5 - 6.5 Mohs Scale 570 KHN Design Tensile Strength: 4.8×107 Pa (N/m²), 160,000 psi Design Compressive Strength: Greater than 1.1×108 Pa (160,000 psi) Bulk Modulus: 3.1×10^{10} Pa (5.3×10^{3} psi) Poissons ratio: 0.17 Coefficient of thermal expansion ($20 - 320^{\circ}$ C): 5.5×10^{-7} cm/cm °C. Thermal conductivity: 1.4 W/m° C Specific heat: (20° C) 670 J/kg °C Softening point: 1683° C Annealing point: 1215° C Strain point: 1120° C Electrical resistivity (350° C): 7×10^{7} ohm cm Index of refraction: 1.4585Constringence (Nu value): 67.56

Empirical Annealing Rates:

Cooling from two sides: Rate °C/minute: 4274.7 x residual stress Pa/(thickness, mm)₂

Cooling from one side: Rate °C/minute: 4274.7 x residual stress Pa/(2 x thickness, mm)₂.

Residual stress: 1.7 x 10⁷ to 20.4 x 10⁷ Pa (25-300 psi).

(As a general rule, it is possible to cool up to 100° C/hour for sections less than 25 mm thick.)

Typical Trace Element Composition (ppm by weight):

Al	14
As	<0.002
В	<0.02
Ca	0.4
Cd	<0.01
Cr	<0.05
Cu	<0.05
Fe	0.2
K	0.6
Li	0.6
Mg	0.1
Mn	<0.05
Na	0.7
Ni	<0.1
P	<0.2
Sb	<0.003
Ti	1.1
Zr	0.8
OH	<5

Thermal properties:

One of the most important properties of fused quartz is its extremely low coefficient of expansion (20-320° C): 5.5×10^{-7} mm° C. Its coefficient is 1/34 that of copper and only 1/7 of borosilicate glass. Thermal conductivity information is given below as a function of temperature:

Representative thermal conductivity of fused quartz. Source: Published manufacturer's data.

Index of refraction:

Revised: EER 10/15