

Exceptional Dimensional Stability and Surface Quality in Thin, Large-Size Sheets

Corning[®] EAGLE XG[®] Glass is considered the most widely used and trusted glass by the world's leading panel makers, and was the first glass composition to include no heavy metals. Available in the widest variety of form factors, EAGLE XG[®] Glass can be made as thin as 0.25 mm up to Gen 5.5, 0.3 mm up to Gen 6, 0.4 mm up to Gen 8.5, and 0.5 mm up to Gen 10.5 to enable thinner, lighter, and curved display panels.

Product & Material Information

Corning[®] EAGLE XG[®] Glass is produced to the following type specifications:

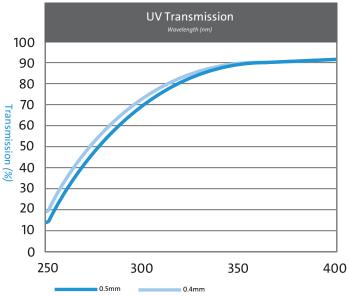
Mater	ial Informatio	n	Ele	ectrical					
Glass Type	Alkaline Earth Boro-	Aluminosilicate			D)ielectric Cor	nstant		
Forms Available	Fusion Drawn Sheet			10					200 11-
Principle Uses	Substrates for active displays	-matrix flat panel		9.5					200 Hz
	Density (20°C)	2.38 g/cc ³	Die	8.5					1 1/1 -
Mechanical Properties	Young's Modulus	73.6 GPa	lectri	8				+	1 KHz
	Shear Modulus	30.1 GPa	C Cor	7.5				\vdash	-
	Poisson's Ratio	0.23	Dielectric Constant	6.5					10 KHz
Thermal Expansion	Coefficient of Thermal Expansion (0 - 300°C)	31.7x10 ⁻⁷ / °C		6 5.5 5				2	100 KHz
ттетна ехранзіон	Room Temperature to Setting Point	35.5x10 ⁻⁷ / °C (25-675°C)		0	100 200	0 300 Temperatu Dielectric Cons (20 °C/68 °F	tant: 5.27	500 6	500
	Working Point (10 ⁴ poises)	1293°C				Dissipation F			
Viscosity	Softening Point (10 ^{7.6} poises)	971°C	Dis	10		(Loss Tangen	t)		200 Hz
			sipatio						
	Annealing Point (10 ¹³ poises)	722°C	patio	1					
	Annealing Point (10 ¹³ poises) Strain Point (10 ^{14.5} poises)	722°C 669°C	pation Facto	0.1					10 KHz
	(10 ¹³ poises) Strain Point (10 ^{14.5} poises)		pation Factor (Loss T						10 KHz
Electrical Properties	(10 ¹³ poises) Strain Point	669°C 12.9 ohm- cm	Tange	0.1					10 KHz

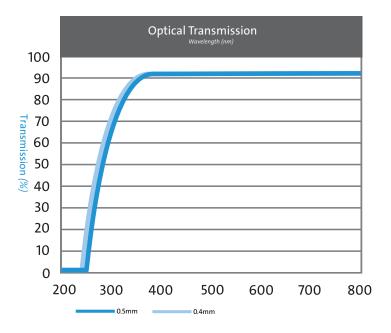
Temperature °C Loss Tangent: 0.30% (20 °C/68 °F –1KHz)

Chemical Durability

Chemical durability is measured via weight loss per surface area after immersion. Values are highly dependent upon actual testing conditions. Unless other-wise noted, concentrations refer to weight percent

Reagents	Time	Temp	Weight Loss (mg/cm ²⁾
HCI - 5%	24 hrs	95°C	0.79
HNO3 - 1M	24 hrs	95°C	0.49
HF - 10%	20 min	20°C	5.18
NH ₄ F:HF - 10%	20 min	20°C	0.84
1HF:10HNO ₃	3 min	20°C	1.48
1HF:100HNO ₃	3 min	20°C	0.16
DI H ₂ O	24 hrs	95°C	0.00
Na ₂ CO ₃ - 0.02N	6 hrs	95°C	0.16
NaOH - 5%	6 hrs	95°C	1.83


Total alkali content is approximately: 0.1wt% (Typical <0.05wt%)


Weathering: 1

Weathering is defined as corrosion by atmosphericborne gases and vapor such as water and carbon dioxide. Glasses rated 1 will almost never show weathering effects; those rated 2 will occasionally be troublesome, particulary if weathering products cannot be removed; those rated 3 require more careful consideration.

Optical	Refractive	
Wavelength	Index	
435.8nm	1.5198	
467.8nm	1.5169	
480nm	1.5160	
508.6nm	1.5141	
546.1nm	1.5119	
589.3nm	1.0599	
643.8nm	1.5078	

Transmittance

Thermal Conductivity Thermal conductivity is a calculated value, and is equal to the product of the thermal diffusivity multiplied by specific heat multiplied by density of the glass.					
Temp (°C)	Diffusivity (cm ² /sec)	Specific Heat(J/gm-°K)	Conductivity (W/cm -°K)		
23	0.00601	0.768	0.0109		
100	0.00572	0.896	0.0122		
200	0.00546	0.998	0.0129		
300	0.00530	1.067	0.0134		
400	0.00522	1.110	0.0137		
500	0.00518	1.154	0.0142		

